If it's not what You are looking for type in the equation solver your own equation and let us solve it.
x^2+24x-147=0
a = 1; b = 24; c = -147;
Δ = b2-4ac
Δ = 242-4·1·(-147)
Δ = 1164
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$
The end solution:
$\sqrt{\Delta}=\sqrt{1164}=\sqrt{4*291}=\sqrt{4}*\sqrt{291}=2\sqrt{291}$$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(24)-2\sqrt{291}}{2*1}=\frac{-24-2\sqrt{291}}{2} $$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(24)+2\sqrt{291}}{2*1}=\frac{-24+2\sqrt{291}}{2} $
| x+(x+6)+((x+6)÷2)+3=38 | | -2w+18=3{w+1} | | P=3nn=6 | | 70=7(11a+63) | | 144s+8=100s+(3+22s)2 | | 2x-3·(-5-7x)=-5x+15 | | 5y2-40y-45=0 | | 6{v=-2} | | 4x-5/4+3x+1/6=2X | | 4xx=20 | | 2,6–0,2x=4,1–0,5x | | 3+3y=-18 | | 3^3x-x-2=0 | | 39+-3q=99 | | -6=-11+j | | 4x2=3x | | 1=k²(k+1)² | | 4x×x=3x | | x-0,04=-3,3 | | k³=k²(k+1)² | | x-6/9=-5 | | x+2/2=-2 | | 4/3=m+4/1 | | x–17=0 | | 4z/10+3=8 | | 12y=2=10 | | x^2-3x(2x+x)=-x(3+2x)+15 | | 0=3x³-2x²-17 | | z/8+9=1 | | 5,2+x=-12,6 | | 8+4b-b^2=0 | | 7=15-x×2 |